Invented 30 years ago, the atomic force microscope has been a major driver of nanotechnology, ranging from atomic-scale imaging to its latest applications in manipulating individual molecules, ...
Atomic force microscopy (AFM) and infrared (IR) spectroscopy have emerged as complementary techniques that enable the precise characterisation of materials at the nanoscale. AFM provides ...
Atomic force microscopy (AFM) has evolved into an indispensable tool for nanoscale investigation, enabling detailed imaging and quantification of surface topography as well as mechanical properties.
Researchers at Nano Life Science Institute (WPI-NanoLSI), Kanazawa University report in Small Methods the 3D imaging of a suspended nanostructure. The technique used is an extension of atomic force ...
Nanomechanical systems developed at TU Wien have now reached a level of precision and miniaturization that will allow them to ...
New model extracts stiffness and fluidity from AFM data in minutes, enabling fast, accurate mechanical characterization of living cells at single-cell resolution. (Nanowerk Spotlight) Cells are not ...
First invented in 1985 by IBM in Zurich, Atomic Force Microscopy (AFM) is a scanning probe technique for imaging. It involves a nanoscopic tip attached to a microscopic, flexible cantilever, which is ...
Atomic force microscopy (AFM) is a way to investigate the surface features of some materials. It works by “feeling” or “touching” the surface with an extremely small probe. This provides a ...
The developed high-speed three-dimensional scanning force microscopy enabled the measurement of 3D force distribution at solid-liquid interfaces at 1.6 s/3D image. With this technique, 3D hydration ...
The world of nanoscale analysis has been revolutionized by the advent of electrical Atomic Force Microscopy (AFM) modes. New possibilities for measuring electrical properties with remarkable precision ...
When it comes to analyzing living cells, challenging biological samples and thick, multilayer tissue samples require purposefully designed instrumentation. BioAFMs are ideal when it comes to these ...
Anyone who has ever taken the time to critically examine a walnut knows that a two-dimensional photograph fails in many respects to truly convey the unique features--the nicks, crannies, valleys, and ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results